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Starting from rather broad assumptions concerning the dependence of aero- 
dynamic parameters on the orientation of the free-stream velocity 
relative to the body axes, the present paper studies the implications of 
various symmetries of the body on these parameters. Expressions for the 
dependence of the aerodynamic parameters on the polar angle 8 of the 
body cylindrical coordinate system are developed. The aerodynamic forces 
acting on an axisymmetric body with control surfaces are expressed as 
functions of the orientation of the body, and also of the number of fins 
in the absence of mutual interference between the fins. 

1. Let us study the dependence of an aerodynamic parameter F on the 
direction of the free-stream velocity V relative to the body. We shall 

denote by e,, ey, ez the projections of the unit vector e = V/V on the 
rectangular coordinates L, y, t associated with the body. When cz > 0, 
the direction of V is uniquely determined by the values of ey, e,(e%= 
(1 - ey2 - ez 2, ‘12). Hence, we shall study the dependence F = F(e e,). 

The parameter F may refer to fixed x, y, z points (for instance, I;, 
points on the surface of the body) or to points with coordinates depend- 
ent on e 

z 
and ez (for instance to points on the shock front*). F can also 

represen a quantity characteristic of the overall flow (for instance, 
any component of the aerodynamic forces or moments). 

We assume that, when ( ey2 + ez2) Ii2 i Mm (M > 0). the function F( ey, 

eZ) can be expressed with sufficient accuracy by Taylor series, termi- 
nated with the terms of nth power: 

l If we should refer the value F on a shock front to points fixed in 
the x. y, z system, then the function F( e , 
not be expressed in the assumed form 3. 

ez) for such points can- 
(1.1 
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All the subjequent developments are based on this assumption. Let us 
change variables in (1. l), as indicated in Fig. 1: 

pu =: sin (x cm p, e,=siticxsin~ (1.2) 

Here a represents the angle between 
the x-axis and the direction of V (the 
angle of attack), @ the angle between 
the plane t = 0 and the plane formed by 
Y and the x-axis. called the plane of 
the angle of attack hereafter. Sub- 
stituting (1.2) into (l.l), we find the 
dependence F(a, @I: 

IL 
iz 

Fi-g. 1. 

According to our basic assumption, the equality (1.3) is valid for all 
values of @ and for 0 < sin a < M. 

With the aid of identities between powers of trigonometric functions 
and functions of multiple angles cl 1, it is possible to express the 
right-hand side of (1.4) in the form 

(The coefficients of (1.5) and (1.4) are related one to one.) 

Let us introduce a cylindrical coordinate system x, r, 8, having the 
x-axis in common with the system x, y, Z. The parameter F will thus refer 
to the Point A(%, r, 8). Furthermore, y will indicate an angle by which 
the body is rotated around the x-axis from some original orientation 
(Fig. 1). Let us examine the dependence of F not only on a, ,L$ but also 
on the angles y, 8 with the assumption that for at least one pair of 
values y. 8. Equation (1.3) is valid. Then there exists a function 
U(y, 8) > 0, not identically zero, such that for 0 4 sin a < iK(y, 8) and 
for all values ,& y, 6, this dependence F can be represented in a form 
analogous to (1.3) and (1.5): 
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It is clear that simultaneous increments in the angles $‘, y, 8 by an 
arbitrary angle 4 do not change the quantity F. (If F is a projection Of 
a vector, we suppose that the projection is effected onto the direction 

of X, or of r, or of 8: 

It follows 

It is possible to choose the function M(y, 8) so that 

(1.9) 

(1.10) 

Then, in accordance with (1.7) and (1.9) 

Later cases will occur in which F by its nature does not depend on y 

or 8. In these special cases the arguments y(y + 4) or 8(8 + ~$1 will be 
absent from Formulas (1.6) to (1.11). The function M(y, 8) > 0 will have 
a constant magnitude larger than zero, as follows from (1.101. 

2. Let the r-axis coincide with the axis of the body of revolution. 
In that case the aerodynamic parameters will not depend on the angle of 
rotation around the x-axis, and (1.6) and (1.11) can be written 

F (~1, /?, 0) = i Fk(j3, fj)sin”a (2.1) 
L-,1 
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By virtue of the 
and (2.2). We shall 
and instead of F(a, 

arbitrary choice of #. let us set @ = - 8 in (2.1) 
take the plane @ = 0 as that of the angle of attack, 

0, 0). fi_2j,k(O). fi_ Zj,k(O) We shall Write 
.I) 

FM. 0)~ fg_2j,kD fi_ 2j.k. Then we obtain the form of F as dependent on 
8: 

The flow field around the axisymmetric body is symmetric with respect 
to the plane of the angle of attack. If the quantity F does not depend 
on the sense of the angle (i.e. on the directionality of the t-axis). 
then this symmetry implies F(a, 8) = F(a, - 8). If the aerodynamic para- 
meter changes sign with the sense of 6 (and z-direction), then FM, 8) = 
- F(a, - 8). 

From (2.3) it follows that in the first case ff_ 2j.k = 0, and 

F (c, 0) = i sin”a t] f&, k cos (Ii - 2jl $ 
ii=0 @Sj<kis 

(2.4) 

In the second case, ff- 2j,k = 0 and 

F (CL, 0) = - 2 sin” a fkszl, k sin (k - 2j) 0 (2.5) 
A=0 oGj<kl2 

Formulas (2.4) and (2.5) exhibit clearly the dependence of the aero- 
dynamic parameters on the coordinate 6) of the point at which the para- 
meters are to be evaluated. If, in a numerical computation of the flow 
around an axisymmetric body at angle of attack, the aerodynamic para- 
meters are sought in the form (2.4) or (2.5). then the three-variable 
problem reduces to a two-variable problem of determination of the coeffi- 

cients fg_z,j,k Or fi_2j,ko which depend only on x and r. 

In many papers (for instance [ 2 I). quantities of order a2 are neglectet 
in the solution of the flow around an axisymmetric body at a small angle 
of attack a. Then the relations of the form 

are utilized. The validity of (2.6) is generally justified on the bases 
that they satisfy approximately the aerodynamic equations and the boundary 
conditions. It is easy to see that the equalities (2.6) follow from (2.4) 
and (2.5), if in these the quantities of order u* are neglected. 

3. The system of forces and moments acting on the body due to the flow 
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can be represented by resultant vectors P of the aerodynamic forces and 
I of the aerodynamic moments. Henceforth, F will be understood to stand 
either for B or P. Let us designate the projections of P on x,. z, r-axes 

by F,, Fy, F, and its projection on the ray r(x = cons& 8 = const) by 
F r. The aerodynamic parameters F,, F , 

I 
F, characterize the whole flow 

field and do not depend on 8. The va ues F,, F, are related to F,: 

(3.1) 

(3.2) 

Let us apply Formula (1.8) to F, and F,, setting 4 = - y: 

F, (a, P, r) = Fx (~6 3 -r, Oh F,. (a, Pv T, 8) = F, (a, P-T> 0, 0 -7) (3.3) 

The right-hand side of (3.3) is rewritten with the aid of (3.1): 

F, (a, .8, T. 8) = F, (a, P -‘r, 0) cos (fl - 7) + F, (r, p - r, 0) sin (13 - 7) (3.4) 

Let us develop the expressions for F,, F , F, on the right of (3.3) 
and (3.4) in accordance with (1.6) and (1.7 3 and let us specify the 
orientation of the plane of angle of attack by setting 6 = 0: 

F,. (a, T) = x sinka 2 If,, jJ_*j. k cos (k - 2i) r - f,, &. k sin (k - 23’) r] (3.5) 

sin” CL IX (l/q, i_zj, k cos (6 - 2i) r - f,,, i_Zj, k sin (k - 2j) y] i( 
k=o O<j<k / 2 

~cos(~-~)+~f,,Ch._2j,h.Cos(k-223’)r-ffl,~_-2j,h.sin(k-22j)~]sin(~-~)~ (3.6) 

(For the sake of brevity, the arguments which are equal to zero have 
been dropped in (3.5) and (3.6) .I 

BY VirtUe of (3.2) for e = 0 and 8 = a/2, and some rearranging, we 

obtain from (3.6) the expressions for Fy(a, y) and F,(a, y): 

n+1 
F, (a, 7) = x sink-b x [f, :_9j k 2 . cos (k - 2i) y -- /ZI,;_2j,k sin f/c - Zj) y] 

k=l O<j<k/2 

nil 

(3.7) 

F, (a, r) = 2 sink-‘a 2 [ft,kc_~j,r;COS (k - ZiJ T - jr,z_2j,k sin (k - 23’) r] (3.3) 
k=L o<j,<k/2 
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The coefficients with index k in (3.7) and (3.8) and the coefficients 
with index k - 1 in (3.6) are related one to one, and there exists the 
relation 

Hereafter, the primes in the coefficients of (3.7) and (3.8) will be 
dropped. 

Equations (3.5). (3.7) and (3.81, together with the relations (3.9). 
determine the dependence of the components of B or I on the orientation 
of the body in the flow. Let us write these in a more compact form: 

and the index II stands for either y or Z, while the index u stands for x 
or v. 

Let us examine how Expressions (3.11) simplify in the case of a sym- 
metric body. Let the body possess a plane of symmetry and that, for y = 0, 
this plane coincides with the plane of the angle of attack #3= 0. The 
flow field around the body (which is now rotated by an angle y or - y 
from the original orientation) will still be symmetric with respect to 
the plane B = 0. Hence 

and for R,, Ry, M, 

Further, let the body be symmetric in such a way that a rotation of 
the body by an angle y = 2n/r (a = integer > 1) around the x-axis cannot 
be distinguished from the original orientation. A body of revolution with 
regularly spaced and equally deflected control surfaces, for instance. 
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possesses such symmetry. 

From such “symmetry under finite rotation” it follows that 

Substituting (3.11) into (3.15) and simplifying, we obtain 

o<zL~ fu,ch._-2j,h. sin (k - 2j) $ sin (It - 2;) T + n+ + ( > \ 

+ fh,i_2j,ksin (k- Zi),: cos (k- 23’) (T+ G)]= 0 

(3.15) 

(3.16) 

Because of the arbitrariness in the choice of 
follows from (3.16) that 

ju,ck_-pj, k sin (k - 21’) ;t = 0, jU,SL_-2j, k oin (k - 

the angle y + n/a it 

(0 < i < k/2) 

(3.17) 

Clearly f~,k_,2j c and fi k_ zj,c can be unequal to zero only for 
k - 2 j = ia. where 1 is an ibteger which satisfies 0 Q i G k/n and which 
makes k - in an even number. 

In Equation (3.11) let us change from summing on j to summing on i, 
and let us introduce the function 6(i), which is zero for i odd and 
unity for i even. Then (3.11) is expressible as 

Fu, CT) = 2 6 (I( - im) (fl(,im,k cos im r - f,,&&n im r) (3.18) 
OS.i<k/?Tl 

From (3.18) it can be seen that the smallest value of k for which 

F,k(y) still depends on y is k = m. It follows that for small angles of 
attack one can neglect the dependence of the aerodynamic forces on the 
orientation of the control surfaces relative to the plane of the angle 
of attack: in accordance with (3.10) the dependence of Fx on y appears 
only in terms of order a’, and for F 1 

Y and F, in terms of order a”- . 

For the case of an axisymmgtric body, the number a can be considered 
as infinite, and for an arbitrary k there remains only one term in 
(3.18) corresponding to i = 0: 

F,, = 6 (k) fu,,. (3.19) 

(where instead of fi,O,k the notation fuk is introduced), 
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Substituting (3.19) into (3.101, we obtain the expansions in powers 
of sin a of the aerodynamic forces on an axisymmetric body: 

(3.20) 

Since an axisymmetric body possesses a plane of symmetry, then from 
(3.12) and (3.20) it follows that Rz = gl, = My = 0. 

4. AS the free-stream velocity becomes more and more supersonic, the 
regions on the surface of the body which are influenced by the presence 
of the control surfaces become more and more narrow. Let us consider a 
velocity so large that for sin a Q M and for all values of y the regions 
of influence of the different control surfaces do not intersect on the 
surface of the body, i.e. there is no interference between the control 
surfaces. 

Let Expressions (3.20) specify the magnitude of the aerodynamic forces 
and moments of an arbitrary axisymmetric body, and let (3.10) give the 
same quantities but for the same body with a single control surface. The 
difference between these two expressions AIF,(a, y) gives the increments 
in forces and moments due to the effect of one control surface 

where 

When there are I regularly spaced identical control surfaces, then 
the total increments in forces and moments A,F,(a, y) are expressible in 

terms of Al~,(a, y) (in view of the non-interference between surfaces): 

(4.3) 

Substituting (4.1) into (4.3) 

where 
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Expanding the right-hand side of (4.5) with the aid of (4.2) 

Here the following notation is used: 

?I+-1 

(3 c -23 k-2j.m - 
I=0 

It is known (for instance [ 1 I ) that when the integer k - 2j is not 
divisible by n, the sums are identically zero. When k - 2j = i I, where i 
is an integer, then 

Let us 
switch to 

bint.m = m cos imy, csi; m = m sin irnr (4.8) 

substitute into (4.6) the values (4.7). and in (4.6) let us 
summation on i as in the development of (3.18): 

(4.9) 

Expressions (4.4) and (4.9) give the desired dependence of the aero- 
dynamic forces and moeents on the number of control surfaces II in absence 
of mutual interference. For k < a the expression inside the brackets in 
(4.9) is independent of a. It follows that if we compare the contributions 
to forces or moments due to I and I’ (with a’ > a) control surfaces, we 
shall have 

The first equality is valid to order aa and the second to order a.- ‘. 
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